一、什么是高频二极管?
高频二极管是指主要用于开关、检波、调制、解调及混频等非线性变换高频电路中使用的半导体二极管的统称。
二、高频二极管主要包括哪些二极管?
1、快恢复二极管FRD(Fast RecoveryDiode)
2、超快恢复二极管SRD (SuperfastRecovery Diode)
3、肖特基二极管SBD(Schottky Barrier Diode)
4、检波二极管
5、开关二极管
PIN型二极管(PIN Diode)
一、什么是高频二极管?
高频二极管是指主要用于开关、检波、调制、解调及混频等非线性变换高频电路中使用的半导体二极管的统称。
二、高频二极管主要包括哪些二极管?
1、快恢复二极管FRD(Fast RecoveryDiode)
2、超快恢复二极管SRD (SuperfastRecovery Diode)
3、肖特基二极管SBD(Schottky Barrier Diode)
4、检波二极管
5、开关二极管
PIN型二极管(PIN Diode)
一、发光二极管的特性
二极管最主要的特性是单向导电性,其伏安特性曲线如图1所示,
图1、二极管的伏安特性曲线
1、正向特性
当加在发光二极管两端的正向电压(P为正、N为负)很小时(锗管小于0.1伏,硅管小于0.5伏),管子不导通,处于“截止”状态,当正向电压超过一定数值后,管子才导通,电压再稍微增大,电流急剧暗加(见曲线I段)。不同材料的二极管,起始电压不同,硅管为0.5-.7伏左右,锗管为0.1-0.3左右。
2、反向特性
发光二极管两端加上反向电压时,反向电流很小,当反向电压逐渐增加时,反向电流基本保持不变,这时的电流称为反向饱和电流(见曲线II段)。不同材料的二极管,反向电流大小不同,硅管约为1微安到几十微安,锗管则可高达数百微安,另外,反向电流受温度变化的影响很大,锗管的稳定性比硅管差。
3、击穿特性
当反向电压增加到某一数值时,反向电流急剧增大,这种现象称为反向击穿(见曲线III)。这时的反向电压称为反向击穿电压,不同结构、工艺和材料制成的管子,其反向击穿电压值差异很大,可由1伏到几百伏,甚至高达数千伏。
4、频率特性
由于结电容的存在,当频率高到某一程度时,容抗小到使PN结短路。导致发光二极管失去单向导电性,不能工作,PN结面积越大,结电容也越大,越不能在高频情况下工作。
二、发光二极管的简易测试方法
发光二极管的极性通常在管壳上注有标记,如无标记,可用万用表电阻档测量其正反向电阻来判断(一般用R×100或×1K档)具体方法如表一
表一
二极管简易测试方法
项目
正向电阻
反向电阻
测试方法
测试情况
硅管:表针指示位置在中间或中间偏右一点;锗管:表针指示在右端靠近满刻度的地方(如图所示)表明管子正向特性是好的。
如果表针在左端不动,则管子内部已经断路
硅管:表针在左端基本不动,极靠近OO位置,锗管:表针从左端起动一点,但不应超过满刻度的1/4(如上图所示),则表明反向特性是好的,
如果表针指在0位,则管子内部已短路
三、发光二极管的主要参数
1、正向电流IF
在额定功率下,允许通过发光二极管的电流值。
2、正向电压降VF
发光二极管通过额定正向电流时,在两极间所产生的电压降。
3、最大整流电流(平均值)IOM
在半波整流连续工作的情况下,允许的最大半波电流的平均值。
4、反向击穿电压VB
发光二极管反向电流急剧增大到出现击穿现象时的反向电压值。
5、正向反向峰值电压VRM
发光二极管正常工作时所允许的反向电压峰值,通常VRM为VP的三分之二或略小一些。
6、反向电流IR
在规定的反向电压条件下流过发光二极管的反向电流值
7、结电容C
结电容包括电容和扩散电容,在高频场合下使用时,要求结电容小于某一规定数值。
8、最高工作频率fm
发光二极管具有单向导电性的最高交流信号的频率。
四、常用发光二极管
1、整流二极管
将交流电源整流成为直流电流的二极管叫作整流二极管,它是面结合型的功率器件,因结电容大,故工作频率低。
通常,IF在1安以上的二极管采用金属壳封装,以利于散热;IF在1安以下的采用全塑料封装(见图2)由于近代工艺技术不断提高,国外出现了不少较大功率的管子,也采用塑封形式。
(a)全密封金属结构
(b)塑料封装
图2 二极管封装
2、检波二极管
检波二极管是用于把迭加在高频载波上的低频信号检出来的器件,它具有较高的检波效率和良好的频率特性。
3、开关二极管
在脉冲数字电路中,用于接通和关断电路的二极管叫开关二极管,它的特点是反向恢复时间短,能满足高频和超高频应用的需要。
开关二极管有接触型,平面型和扩散台面型几种,一般IF<500毫安的硅开关二极管,多采用全密封环氧树脂,陶瓷片状封装,如图三所示,引脚较长的一端为正极。
图3、硅开关二极管全密封环环氧树脂陶瓷片状封装
4、稳压二极
稳压二极管是由硅材料制成的面结合型晶体二极管,它是利用PN结反向击穿时的电压基本上不随电流的变化而变化的特点,来达到稳压的目的,因为它能在电路中起稳压作用,故称为、稳压二极管(简称稳压管)其图形符号见图4
图4、稳压二极管的图形符号
稳压管的伏安特性曲线如图5所示,当反向电压达到Vz时,即使电压有一微小的增加,反向电流亦会猛增(反向击穿曲线很徒直)这时,二极管处于击穿状态,如果把击穿电流限制在一定的范围内,管子就可以长时间在反向击穿状态下稳定工作。
图5、硅稳压管伏安特性曲线
5、变容二极管
变容二极管是利用PN结的电容随外加偏压而变化这一特性制成的非线性电容元件,被广泛地用于参量放大器,电子调谐及倍频器等微波电路中,变容二极管主要是通过结构设计及工艺等一系列途径来突出电容与电压的非线性关系,并提高Q值以适合应用。
变容二极管的结构与普通二极管相似,其符号如图6所示,几种常用变容二极管的型号参数见表一
图6、变容二极管图形符号
表一
常用变容二极管
型号
产地
反向电压(V)
电容量(pF
电容比
使用波段
最小值
最大值
最小值
最大值
2CB11
中国
3
25
2.5
12
UHF
2CB14
中国
3
30
3
18
6
VHF
BB125
欧洲
2
28
2
12
6
UHF
BB139
欧洲
1
28
5
45
9
VHF
MA325
日本
3
25
2
10.3
5
UHF
ISV50
日本
3
25
4.9
28
5.7
VHF
ISV97
日本
3
25
2.4
18
7.5
VHF
ISV59.OSV70/IS2208
日本
3
25
2
11
5.5
UHF
图7(a)是利用变容管的变容特性来调谐本机振荡的频率(电视接收机调谐器中作本机振荡)。图7(b)是一个调谐信号源,用变容管和单结晶体管与恒流二极管组成的锯齿振荡器,利用输出信号进行调频,由于变容管大多数在反偏压下工作,所以应加恒流保护,以防止击穿。
图7、变容二极管的容压特性及等效电路
图8(a)是利用变容管的变容特性来调谐本机振荡的频率(电视接收机调谐器中作本机振荡),图8(b)是一个调谐信号源,用变容管和单结晶体管与恒流二极管组成的锯齿波振荡器,利用输出信号进行调频,由于变容管大多数在反偏压下工作,所以应加恒流保护,以防止击穿。
图8、变容管应用实例
6、阶跃恢复二极管
阶跃恢复二极管是一种特殊的变容管,也称作电荷储存二极管,简称阶跃管,它具有高度非线性的电抗,应用于倍频器时代独有的特点,利用其反向恢复电流的快速突变中所包含的丰富谐波,可获得高效率的高次倍频,它是微波领域中优良的倍频元件。
阶跃管的特性是建立在PN结杂质的特殊分布上,和变容管相似,阶跃管的符号如图9所示,它的直流伏安特性与一般PN结构相同。
图9、阶跃恢复二极管的图形符号
阶段管的特点是:当处于导通状态的二极管突然加上反向电压时,瞬间反向电流立即达到最值IR,并维持一定的时间ts,接差又立即恢复到零,电流和时间的关系见图10所示
图10、阶跃管电流与时间的关系
阶跃管主要用于倍频电路和超高速脉冲整形和发生电路,图11(a)是一个曲型的高次频器,利用阶跃管,很容易做到高达20次倍频而仍保持高效率。图11(b)是利用阶跃管的脉冲整形电路,图11(c)是整形前后的波形比较。
图11、阶跃恢复二极管的典型应用
LED发光二极管
发光二极管发明于20世纪60年代。1962年,尼克·霍洛尼亚柯制成世界上第一支发光二极管。尼克·霍洛尼亚柯当时是通用电气公司的一名普通研究人员,他当初发明的这种发光二极管只能发红光。现在,人们已制成能发黄、绿、蓝、白等不同色彩的发光二极管。
发光二极管是一种半导体固体发光器件。它是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。
发光二极管简称为LED。由镓(Ga)与砷(AS)、磷(P)的化合物制成的二极管,当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管,在电路及仪器中作为指示灯,或者组成文字或数字显示。磷砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光。
发光二极管是半导体二极管的一种,它与普通二极管一样是由一个PN结组成,也具有单向导电性。当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。不同的半导体材料中电子和空穴所处的能量状态不同。当电子和空穴复合时释放出的能量多少不同,释放出的能量越多,则发出的光的波长越短。常用的是发红光、绿光或黄光的二极管。
发光二极管的反向击穿电压约5伏。它的正向伏安特性曲线很陡,使用时必须串联限流电阻以控制通过管子的电流。限流电阻R可用下式计算:
R=(E-UF)/IF
式中E为电源电压,UF为LED的正向压降,IF为LED的一般工作电流。发光二极管的两根引线中较长的一根为正极,应接电源正极。有的发光二极管的两根引线一样长,但管壳上有一凸起的小舌,靠近小舌的引线是正极。
与小白炽灯泡和氖灯相比,发光二极管的特点是:工作电压很低(有的仅一点几伏);工作电流很小(有的仅零点几毫安即可发光);抗冲击和抗震性能好,可靠性高,寿命长;通过调制通过的电流强弱可以方便地调制发光的强弱。由于有这些特点,发光二极管在一些光电控制设备中用作光源,在许多电子设备中用作信号显示器。把它的管心做成条状,用7条条状的发光管组成7段式半导体数码管,每个数码管可显示0~9十个数目字。
估计很多人都不知道,发光二极管的电压其实和发光的颜色也关联的,不同颜色的发光二极管的电压是不一样的哦,其中红色发光二极管要求的电压最底,蓝白发光二极管要求的电压最高。
红色发光二极管1.7-2.5V
绿色发光二极管2.0-2.4V
黄色发光二极管1.9-2.4V
蓝/白色发光二极管3.0-3.8V
瞬态抑制二极管是一种限压型的过压保护器件,它叫TVP、ABD,它以pS级的速度把过高的电压限制在一个安全范围之内,从而起到保护后面电路的作用。
广泛应用在半导体及敏感的电子零件过电压、ESD保护上,主要包括:消费类产品、工业产品、通讯、电脑、汽车、电源供应品、型号线路保护及军事、 航天航空导航系统及控制系统上。
反应速度快,电压抑制能力强,有SMAJ,SMBJ,SMCJ,SMDJ,P4KE,SA,P6KE,1.5KE, 3KP,5KP,15KPA,20KPA,30KPA系列和低电容的SAC(500W,50Pf),LCE(1.5KW,100Pf)系列.
产品通过一系列的安全可靠认证,如UL、无铅认证,符合IEC61000-4-2 ESD、IEC 61643-321:2001测试标准。
半导体二极管参数符号及其意义
CT---势垒电容、Cj---结(极间)电容, 表示在二极管两端加规定偏压下,锗检波二极管的总电容、 Cjv---偏压结电容、 Co---零偏压电容、 Cjo---零偏压结电容、 Cjo/Cjn---结电容变化、 Cs---管壳电容或封装电容 、 Ct---总电容、 CTV---电压温度系数.在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比、 CTC---电容温度系数 、 Cvn---标称电容
IF---正向直流电流(正向测试电流).锗检波二极管在规定的正向电压 VF 下,通过极间的电流;硅整流管,硅堆在规定的使用条 件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压 二极管正向电参数时给定的电流 、 IF(AV)---正向平均电流、 IFM(IM)---正向峰值电流(正向最大电流).在额定功率下,允许通过二极管的最大正向脉冲电流.发光二极管极限电流. IH---恒定电流,维持电流. Ii--- 发光二极管起辉电流 IFRM---正向重复峰值电流 IFSM---正向不重复峰值电流(浪涌电流) Io---整流电流.在特定线路中规定频率和规定电压条件下所通过的工作电流 IF(ov)---正向过载电流 IL---光电流或稳流二极管极限电流 ID---暗电流 IB2---单结晶体管中的基极调制电流 IEM---发射极峰值电流 IEB10---双基极单结晶体管中发射极与第一基极间反向电流 IEB20---双基极单结晶体管中发射极向电流 ICM---最大输出平均电流 IFMP---正向脉冲电流 IP---峰点电流 IV---谷点电流 IGT---晶闸管控制极触发电流 IGD---晶闸管控制极不触发电流 IGFM---控制极正向峰值电流 IR(AV)---反向平均电流 IR(In)---反向直流电流(反向漏电流).在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规 定值时,所通过的电流;硅开关二极管两端加反向工作电压
VR 时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流 管在正弦半波最高反向工作电压下的漏电流.
IRM---反向峰值电流 IRR---晶闸管反向重复平均电流 IDR---晶闸管断态平均重复电流 IRRM---反向重复峰值电流 IRSM---反向不重复峰值电流(反向浪涌电流) Irp---反向恢复电流 Iz---稳定电压电流(反向测试电流).测试反向电参数时,给定的反向电流 Izk---稳压管膝点电流 IOM---最大正向(整流)电流.在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗 检波二极管的最大工作电流 IZSM---稳压二极管浪涌电流 IZM---最大稳压电流.在最大耗散功率下稳压二极管允许通过的电流 iF---正向总瞬时电流 iR---反向总瞬时电流 ir---反向恢复电流 Iop---工作电流 Is---稳流二极管稳定电流
f---频率 n---电容变化指数;电容比 Q---优值(品质因素) δvz---稳压管电压漂移 di/dt---通态电流临界上升率 dv/dt---通态电压临界上升率 PB---承受脉冲烧毁功率 PFT(AV)---正向导通平均耗散功率 PFTM---正向峰值耗散功率 PFT---正向导通总瞬时耗散功率 Pd---耗散功率 PG---门极平均功率 PGM---门极峰值功率 PC---控制极平均功率或集电极耗散功率 Pi---输入功率 PK---最大开关功率 PM---额定功率.硅二极管结温不高于 150 度所能承受的最大功率 PMP---最大漏过脉冲功率 PMS---最大承受脉冲功率 Po---输出功率 PR---反向浪涌功率 Ptot---总耗散功率 Pomax---最大输出功率 Psc---连续输出功率 PSM---不重复浪涌功率 PZM---最大耗散功率.在给定使用条件下,稳压二极管允许承受的最大功率 RF(r)---正向微分电阻.在正向导通时,电流随电压指数的增加,呈现明显的非线性特性.在某一正向电压下,电压增加微小量 △V,正向电流相应增加△I,则△V/△I 称微分电阻 RBB---双基极晶体管的基极间电阻 RE---射频电阻 RL---负载电阻 Rs(rs)----串联电阻 Rth----热阻 R(th)ja----结到环境的热阻 Rz(ru)---动态电阻 R(th)jc---结到壳的热阻 r δ---衰减电阻 r(th)---瞬态电阻
Ta---环境温度 Tc---壳温 td---延迟时间 tf---下降时间 tfr---正向恢复时间 tg---电路换向关断时间 tgt---门极控制极开通时间 Tj---结温 Tjm---最高结温 ton---开通时间 toff---关断时间 tr---上升时间 trr---反向恢复时间 ts---存储时间 tstg---温度补偿二极管的贮成温度 a---温度系数 λp---发光峰值波长 △ λ---光谱半宽度 η---单结晶体管分压比或效率 VB---反向峰值击穿电压 Vc---整流输入电压 VB2B1---基极间电压 VBE10---发射极与第一基极反向电压 VEB---饱和压降 VFM---最大正向压降(正向峰值电压) VF---正向压降(正向直流电压) △VF---正向压降差 VDRM---断态重复峰值电压 VGT---门极触发电压 VGD---门极不触发电压 VGFM---门极正向峰值电压 VGRM---门极反向峰值电压 VF(AV)---正向平均电压 Vo---交流输入电压 VOM---最大输出平均电压 Vop---工作电压 Vn---中心电压 Vp---峰点电压 VR---反向工作电压(反向直流电压) VRM---反向峰值电压(最高测试电压) V(BR)---击穿电压 Vth---阀电压(门限电压) VRRM---反向重复峰值电压(反向浪涌电压) VRWM---反向工作峰值电压 V v---谷点电压 Vz---稳定电压 △Vz---稳压范围电压增量 Vs---通向电压(信号电压)或稳流管稳定电流电压 av---电压温度系数 Vk---膝点电压(稳流二极管) VL ---极限电压
双极型晶体管参数符号及其意义
Cc---集电极电容 Ccb---集电极与基极间电容 Cce---发射极接地输出电容 Ci---输入电容 Cib---共基极输入电容 Cie---共发射极输入电容 Cies---共发射极短路输入电容 Cieo---共发射极开路输入电容 Cn---中和电容(外电路参数) Co---输出电容 Cob---共基极输出电容.在基极电路中,集电极与基极间输出电容 Coe---共发射极输出电容 Coeo---共发射极开路输出电容 Cre---共发射极反馈电容 Cic---集电结势垒电容 CL---负载电容(外电路参数) Cp---并联电容(外电路参数) BVcbo---发射极开路,集电极与基极间击穿电压 BVceo---基极开路,CE 结击穿电压 BVebo--- 集电极开路 EB 结击穿电压 BVces---基极与发射极短路 CE 结击穿电压 BV cer---基极与发射极串接一电阻,CE 结击穿电压 D---占空比 fT---特征频率 fmax---最高振荡频率.当三极管功率增益等于 1 时的工作频率 hFE---共发射极静态电流放大系数 hIE---共发射极静态输入阻抗 hOE---共发射极静态输出电导 h RE---共发射极静态电压反馈系数 hie---共发射极小信号短路输入阻抗 hre---共发射极小信号开路电压反馈系数 hfe---共发射极小信号短路电压放大系数 hoe---共发射极小信号开路输出导纳 IB---基极直流电流或交流电流的平均值 Ic---集电极直流电流或交流电流的平均值 IE---发射极直流电流或交流电流的平均值 Icbo---基极接地,发射极对地开路,在规定的 VCB 反向电压条件下的集电极与基极之间的反向截止电流 Iceo---发射极接地,基极对地开路,在规定的反向电压 VCE 条件下,集电极与发射极之间的反向截止电流 Iebo---基极接地,集电极对地开路,在规定的反向电压 VEB 条件下,发射极与基极之间的反向截止电流 Icer---基极与发射极间串联电阻 R,集电极与发射极间的电压 VCE 为规定值时,集电极与发射极之间的反向截止电流 Ices---发射极接地,基极对地短路,在规定的反向电压 VCE 条件下,集电极与发射极之间的反向截止电流 Icex---发射极接地,基极与发射极间加指定偏压,在规定的反向偏压 VCE 下,集电极与发射极之间的反向截止电流 ICM---集电极最大允许电流或交流电流的最大平均值. IBM---在集电极允许耗散功率的范围内,能连续地通过基极的直流电流的最大值,或交流电流的最大平均值 ICMP---集电极最大允许脉冲电流 ISB---二次击穿电流 IAGC---正向自动控制电流 Pc---集电极耗散功率 PCM---集电极最大允许耗散功率 Pi---输入功率 Po---输出功率 Posc---振荡功率 Pn---噪声功率 Ptot---总耗散功率 ESB---二次击穿能量 rbb'---基区扩展电阻(基区本征电阻) rbb'Cc---基极-集电极时间常数,即基极扩展电阻与集电结电容量的乘积 rie---发射极接地,交流输出短路时的输入电阻 roe---发射极接地,在规定 VCE,Ic 或 IE,频率条件下测定的交流输入短路时的输出电阻 RE---外接发射极电阻(外电路参数) RB---外接基极电阻(外电路参数) Rc ---外接集电极电阻(外电路参数) RBE---外接基极-发射极间电阻(外电路参数) RL---负载电阻(外电路参数) RG---信号源内阻 Rth---热阻 Ta---环境温度 Tc---管壳温度 Ts---结温 Tjm---最大允许结温 Tstg---贮存温度 td----延迟时间 tr---上升时间 ts---存贮时间 tf---下降时间 ton---开通时间 toff---关断时间 VCB---集电极-基极(直流)电压 VCE---集电极-发射极(直流)电压 VBE---基极发射极(直流)电压 VCBO---基极接地,发射极对地开路,集电极与基极之间在指定条件下的最高耐压 VEBO---基极接地,集电极对地开路,发射极与基极之间在指定条件下的最高耐压 VCEO---发射极接地,基极对地开路,集电极与发射极之间在指定条件下的最高耐压 VCER---发射极接地,基极与发射极间串接电阻 R,集电极与发射极间在指定条件下的最高耐压 VCES---发射极接地,基极对地短路,集电极与发射极之间在指定条件下的最高耐压 VCEX---发射极接地,基极与发射极之间加规定的偏压,集电极与发射极之间在规定条件下的最高耐压 Vp---穿通电压. VSB---二次击穿电压 VBB---基极(直流)电源电压(外电路参数) Vcc---集电极(直流)电源电压(外电路参数) VEE---发射极(直流)电源电压(外电路参数) VCE(sat)---发射极接地,规定 Ic,IB 条件下的集电极-发射极间饱和压降 VBE(sat)---发射极接地,规定 Ic,IB 条件下,基极-发射极饱和压降(前向压降) VAGC---正向自动增益控制电压 Vn(p-p)---输入端等效噪声电压峰值 V n---噪声电压 Cj---结(极间)电容, 表示在二极管两端加规定偏压下,锗检波二极管的总电容 Cjv---偏压结电容 Co---零偏压电容 Cjo---零偏压结电容 Cjo/Cjn---结电容变化 Cs---管壳电容或封装电容 Ct---总电容 CTV---电压温度系数.在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比 CTC---电容温度系数 Cvn---标称电容 IF---正向直流电流(正向测试电流).锗检波二极管在规定的正向电压 VF 下,通过极间的电流;硅整流管,硅堆在规定的使用条 件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压 二极管正向电参数时给定的电流 IF(AV)---正向平均电流 IFM(IM)---正向峰值电流(正向最大电流).在额定功率下,允许通过二极管的最大正向脉冲电流.发光二极管极限电流. IH---恒定电流,维持电流. Ii--- 发光二极管起辉电流 IFRM---正向重复峰值电流 IFSM---正向不重复峰值电流(浪涌电流) Io---整流电流.在特定线路中规定频率和规定电压条件下所通过的工作电流 IF(ov)---正向过载电流 IL---光电流或稳流二极管极限电流 ID---暗电流 IB2---单结晶体管中的基极调制电流 IEM---发射极峰值电流 IEB10---双基极单结晶体管中发射极与第一基极间反向电流 IEB20---双基极单结晶体管中发射极向电流 ICM---最大输出平均电流 IFMP---正向脉冲电流 IP---峰点电流 IV---谷点电流 IGT---晶闸管控制极触发电流 IGD---晶闸管控制极不触发电流 IGFM---控制极正向峰值电流 IR(AV)---反向平均电流 IR(In)---反向直流电流(反向漏电流).在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规 定值时,所通过的电流;硅开关二极管两端加反向工作电压 VR 时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流 管在正弦半波最高反向工作电压下的漏电流. IRM---反向峰值电流 IRR---晶闸管反向重复平均电流 IDR---晶闸管断态平均重复电流 IRRM---反向重复峰值电流 IRSM---反向不重复峰值电流(反向浪涌电流) Irp---反向恢复电流 Iz---稳定电压电流(反向测试电流).测试反向电参数时,给定的反向电流 Izk---稳压管膝点电流 IOM---最大正向(整流)电流.在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗 检波二极管的最大工作电流 IZSM---稳压二极管浪涌电流 IZM---最大稳压电流.在最大耗散功率下稳压二极管允许通过的电流 iF---正向总瞬时电流 iR---反向总瞬时电流 ir---反向恢复电流 Iop---工作电流 Is---稳流二极管稳定电流 f---频率 n---电容变化指数;电容比 Q---优值(品质因素) δvz---稳压管电压漂移 di/dt---通态电流临界上升率 dv/dt---通态电压临界上升率 PB---承受脉冲烧毁功率 PFT(AV)---正向导通平均耗散功率 PFTM---正向峰值耗散功率 PFT---正向导通总瞬时耗散功率 Pd---耗散功率 PG---门极平均功率 PGM---门极峰值功率 PC---控制极平均功率或集电极耗散功率 Pi---输入功率 PK---最大开关功率 PM---额定功率.硅二极管结温不高于 150 度所能承受的最大功率 PMP---最大漏过脉冲功率 PMS---最大承受脉冲功率 Po---输出功率 PR---反向浪涌功率 Ptot---总耗散功率 Pomax---最大输出功率 Psc---连续输出功率 PSM---不重复浪涌功率 PZM---最大耗散功率.在给定使用条件下,稳压二极管允许承受的最大功率 RF(r)---正向微分电阻.在正向导通时,电流随电压指数的增加,呈现明显的非线性特性.在某一正向电压下,电压增加微小量 △V,正向电流相应增加△I,则△V/△I 称微分电阻 RBB---双基极晶体管的基极间电阻 RE---射频电阻 RL---负载电阻 Rs(rs)----串联电阻 Rth----热阻 R(th)ja----结到环境的热阻 Rz(ru)---动态电阻 R(th)jc---结到壳的热阻 r δ---衰减电阻 r(th)---瞬态电阻 Ta---环境温度 Tc---壳温 td---延迟时间 tf---下降时间 tfr---正向恢复时间 tg---电路换向关断时间 tgt---门极控制极开通时间 Tj---结温 Tjm---最高结温 ton---开通时间 toff---关断时间 tr---上升时间 trr---反向恢复时间 ts---存储时间 tstg---温度补偿二极管的贮成温度 a---温度系数 λp---发光峰值波长 △ λ---光谱半宽度 η---单结晶体管分压比或效率 VB---反向峰值击穿电压 Vc---整流输入电压 VB2B1---基极间电压 VBE10---发射极与第一基极反向电压 VEB---饱和压降 VFM---最大正向压降(正向峰值电压) VF---正向压降(正向直流电压) △VF---正向压降差 VDRM---断态重复峰值电压 VGT---门极触发电压 VGD---门极不触发电压 VGFM---门极正向峰值电压 VGRM---门极反向峰值电压 VF(AV)---正向平均电压 Vo---交流输入电压 VOM---最大输出平均电压 Vop---工作电压 Vn---中心电压 Vp---峰点电压 VR---反向工作电压(反向直流电压) VRM---反向峰值电压(最高测试电压) V(BR)---击穿电压 Vth---阀电压(门限电压) VRRM---反向重复峰值电压(反向浪涌电压) VRWM---反向工作峰值电压 V v---谷点电压 Vz---稳定电压 △Vz---稳压范围电压增量 Vs---通向电压(信号电压)或稳流管稳定电流电压 av---电压温度系数 Vk---膝点电压(稳流二极管) VL ---极限电压
场效应管参数符号意义
Cds---漏-源电容 Cdu---漏-衬底电容 Cgd---栅-源电容 Cgs---漏-源电容 Ciss---栅短路共源输入电容 Coss---栅短路共源输出电容 Crss---栅短路共源反向传输电容 D---占空比(占空系数,外电路参数) di/dt---电流上升率(外电路参数) dv/dt---电压上升率(外电路参数) ID---漏极电流(直流) IDM---漏极脉冲电流 ID(on)---通态漏极电流 IDQ---静态漏极电流(射频功率管) IDS---漏源电流 IDSM---最大漏源电流 IDSS---栅-源短路时,漏极电流 IDS(sat)---沟道饱和电流(漏源饱和电流) IG---栅极电流(直流) IGF---正向栅电流 IGR---反向栅电流 IGDO---源极开路时,截止栅电流 IGSO---漏极开路时,截止栅电流 IGM---栅极脉冲电流 IGP---栅极峰值电流 IF---二极管正向电流 IGSS---漏极短路时截止栅电流 IDSS1---对管第一管漏源饱和电流 IDSS2---对管第二管漏源饱和电流 Iu---衬底电流 Ipr---电流脉冲峰值(外电路参数) gfs---正向跨导 Gp---功率增益 Gps---共源极中和高频功率增益 GpG---共栅极中和高频功率增益 GPD---共漏极中和高频功率增益 ggd---栅漏电导 gds---漏源电导 K---失调电压温度系数 Ku---传输系数 L---负载电感(外电路参数) LD---漏极电感 Ls---源极电感 rDS---漏源电阻 rDS(on)---漏源通态电阻 rDS(of)---漏源断态电阻 rGD---栅漏电阻 rGS---栅源电阻 Rg---栅极外接电阻(外电路参数) RL---负载电阻(外电路参数) R(th)jc---结壳热阻 R(th)ja---结环热阻 PD---漏极耗散功率 PDM---漏极最大允许耗散功率 PIN--输入功率 POUT---输出功率 PPK---脉冲功率峰值(外电路参数) to(on)---开通延迟时间 td(off)---关断延迟时间 ti---上升时间 ton---开通时间 toff---关断时间 tf---下降时间 trr---反向恢复时间 Tj---结温 Tjm---最大允许结温 Ta---环境温度 Tc---管壳温度 Tstg---贮成温度 VDS---漏源电压(直流) VGS---栅源电压(直流) VGSF--正向栅源电压(直流) VGSR---反向栅源电压(直流) VDD---漏极(直流)电源电压(外电路参数) VGG---栅极(直流)电源电压(外电路参数) Vss---源极(直流)电源电压(外电路参数) VGS(th)---开启电压或阀电压 V(BR)DSS---漏源击穿电压 V(BR)GSS---漏源短路时栅源击穿电压 VDS(on)---漏源通态电压 VDS(sat)---漏源饱和电压 VGD---栅漏电压(直流) Vsu---源衬底电压(直流) VDu---漏衬底电压(直流) VGu---栅衬底电压(直流) Zo---驱动源内阻 η---漏极效率(射频功率管) Vn---噪声电压 aID---漏极电流温度系数 ards---漏源电阻温度系数
普通发光二极管的正向饱和压降为1.6V-2.1V, 正向工作电流为5-20mA。
一、LED极限参数的意义
二、LED电参数的意义
按其使用材料可分为磷化镓(GaP)发光二极管、磷砷化镓(GaA )发光二极管、砷化镓(GaAs)发光二极管、磷铟砷化镓(GaAsI )发光二极管和砷铝化镓(GaAlAs)发光二极管等多种。
按其封装结构及封装形式除可分为金属封装、陶瓷封装、塑料封装、树脂封装和无引线表面封装外,还可分为加色散射封装(D)、无色散射封装(W)、有色透明封装(C)和无色透明封装(T)。
按其封装外形可分为圆形、方形、矩形、三角形和组合形等多种。
塑封发光二极管按管体颜色又分为红色、琥珀色、黄色、橙色、浅蓝色、绿色、黑色、白色、透明无色等多种。而圆形发光二极管的外径从¢2-¢20mm,分为多种规格。
按发光二极管的发光颜色又可分为有色光和红外光。有色光又分为红色光、黄色光、橙色光、绿色光、蓝色光等。
另外,发光二极管还可分为普通单色发光二极管、高亮度发光二极管、超高亮度发光二极管、变色发光二极管、闪烁发光二极管、电压控制型发光二极管、红外发光二极管和负阻发光二极管等。
1. 按发光管发光颜色分
按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。另外,有的发光二极管中包含二种或三种颜色的芯片。
根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。散射型发光二极管和达于做指示灯用。
2. 按发光管出光面特征分
按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm及φ20mm等。国外通常把φ3mm的发光二极管记作T-1;把φ5mm的记作T-1(3/4);把φ4.4mm的记作T-1(1/4)。
由半值角大小可以估计圆形发光强度角分布情况。从发光强度角分布图来分有三类:
1)高指向性。一般为尖头环氧封装,或是带金属反射腔封装,且不加散射剂。半值角为5°~20°或更小,具有很高的指向性,可作局部照明光源用,或与光检出器联用以组成自动检测系统。
2)标准型。通常作指示灯用,其半值角为20°~45°。
3)散射型。这是视角较大的指示灯,半值角为45°~90°或更大,散射剂的量较大。
3.按发光二极管的结构分
按发光二极管的结构分有全环氧包封、金属底座环氧封装、陶瓷底座环氧封装及玻璃封装等结构。
4.按发光强度和工作电流分
按发光强度和工作电流分有普通亮度的LED(发光强度<10mcd);超高亮度的LED(发光强度>100mcd);把发光强度在10~100mcd间的叫高亮度发光二极管。
一般LED的工作电流在十几mA至几十mA,而低电流LED的工作电流在2mA以下(亮度与普通发光管相同)。
除上述分类方法外,还有按芯片材料分类及按功能分类的方法。
由于发光二极管具有最大正向电流IFm、最大反向电压VRm的限制,使用时,应保证不超过此值。为安全起见,实际电流IF应在0.6IFm以下;应让可能出现的反向电压VR<0。6VRm。
超亮发光二极管有三种颜色,然而三种发光二极管的压降都不相同。其中红色的压降为2.0--2.2V;黄色的压降为1.8—2.0V;绿色的压降为3.0—3.2V。正常发光时的额定电流均为20mA。
白色发光二极管的发光原理与其它发光二极管的发光原理稍有一点不同。目前有两种发光模式能使发光二极管发出白色光。一种是采用二波长<蓝色光+黄色光>发光模式的白色发光二极管,其基础部分是一颗蓝色发光二极管,在蓝色发光二极管芯片的外面覆盖一层荧光体层,当蓝色发光二极管芯片发射出来的蓝色光,有一部分在透过荧光体时被荧光体吸收,变成了黄光,黄光又与透过荧光体的蓝光混合后就发出白色光。例如有的白色发光二极管发出的光是纯白的,而有的发出的光是白偏蓝的。
另一种是采用三波长<蓝色光+绿色光+红色光>发光模式的全彩色发光二极管。将红、绿、蓝三颗发光二极管封装在同一个管壳中,三种原色的光混合也可以产生出白光,但是由于制作全彩色发光二极管的成本要相对较高,所以一般不会用全彩色发光二极管来制作照明灯,全彩色发光二极管主要是用来制造全彩色显示屏,用全彩色发光二极管制作照明灯会大大增加产品的成本。
白色发光二极管的正向电压降与其他发光二极管的正向电压降不同。白色发光二极管的正向电压降约为3.5V左右,需要正向工作电流≥15mA左右时,才能使其正常发光。
发光二极管(LED)是一种由磷化镓(GaP)等半导体材料制成的、能直接将电能转变成光能的发光显示器件。当其内部有一定电流通过时,它就会发光。
发光二极管也与普通二极管一样由PN结构成,也具有单向导电性。它广泛应用于各种电子电路、家电、仪表等设备中、作电源指示或电平指示等。
红外发光二极管也称红外线发射二极管,它是可以将电能直接转换成红外光(不可见光)并能辐射出去的发光器件,主要应用于各种光控及遥控发射电路中。
红外发光二极管的结构、原理与普通发光二极管相近,只是使用的半导体材料不同。红外发光二极管通常使用砷化镓(GaAs)、砷铝化镓(GaAlAs)等材料,采用全透明或浅蓝色、黑色的树脂封装。
常用的红外发光二极管有SIR系列、SIM系列、PLT系列、GL系列、HIR系列和HG系列等。